CATALOG

VFL Parallel Fan-Powered, Low-Height, VAV Terminals

Catalog: ET130.13-EG7 (0325)

TABLE OF CONTENTS

Features And Benefits	2
Construction Features	4
Standard And Optional Features	6
Application And Selection	7
Application And Selection	8
General Selection Data	10
Sound Power Data	
Sound Power Data, AHRI Ratings	
Primary Airflow Calibration	16
Notes page	
EC Fan Motor Option	
General Selection, EC Motor	19
Fan Performance, EC Motor	
Electric Heat	21
Hot Water Coil Data	22
Guide Specifications	
•	

NOTES:

- All data herein is subject to change without notice. Some drawings are not shown in this catalog.
- · Drawings not for installation purposes.
- Construction drawings and performance data contained herein should not be used for submittal purposes.
- ETL Listing Number 3052384-001.

FEATURES AND BENEFITS

QUIET COMFORT

Model VFL fan terminals are specifically designed for quiet operation in shallow or congested ceiling spaces. They also offer improved space comfort and flexibility for a wide variety of HVAC systems. This is critical in today's buildings, where occupants are placing more emphasis on indoor acoustics.

OCCUPANT-SENSITIVE DESIGN

Due to heightened interest in Indoor Air Quality, many HVAC system designers are focusing on the effects of particulate contamination within a building's occupied space. Often, HVAC system noise is overlooked as a source of occupied space contamination. The VFL terminal is specifically designed to eliminate obtrusive fan noise from reaching the occupants.

Occupants will benefit from the VFL design that minimizes low frequency (125Hz-250Hz) sound levels that typically dominate the space sound level.

DESIGN FLEXIBILITY

Selection and Layout. The VFL provides flexibility in system design. Reduced noise at the fan terminal allows the system designer to place properly sized units directly above occupied spaces. It is not necessary to use the crowded space above a hall or corridor to locate the equipment. This will reduce lengthy and expensive discharge duct runs. The standard shallow casing height (10 5/8" or 12") minimizes conflict with other systems competing for ceiling space. The FlowStar™ sensor ensures accurate control, even when space

constraints do not permit long straight inlet duct runs to the terminal.

Sizes. Model VFL terminals are available with primary air valves handling up to 3000 CFM. Three fan sizes provide a range of heating capacities between 100 and 1500 CFM. Units are available with multiple primary air valve and fan combinations to meet current industry needs.

CONVENIENT INSTALLATION

Quality. All VFL terminals are thoroughly inspected during each step of the manufacturing process, including a comprehensive "pre-ship" inspection, to assure the highest quality product available. Each unit is also "run tested" before leaving the factory to ensure trouble free field "start-up."

Quick Installation. A standard single point electrical main power connection is provided. Electronic controls and electrical components are located on the same side of the casing for quick access, adjustment, and trouble-shooting. Installation time is minimized with the availability of factory calibrated controls.

Terminals can be ordered with left or right hand control configurations to facilitate clearance requirements from obstructions in a congested ceiling cavity.

The terminal is constructed to allow installation with standard metal hanging straps. Optional hanger brackets for use with all-thread support rods or wire hangers are also available.

Air Balance. Finite fan speed adjustment is accomplished with an electronic SCR controller. The SCR fan speed controller is offered by ENVIRO-TEC and is compatible with the fan motor. This minimizes electronic interference and harmonic distortion that occurs from non- compatible motor and SCR components. Increased motor life and efficiency result from the compatible design.

VFL terminals utilize Electrically Commutated motors that accommodate a broad range of flow and static pressure field conditions while dramatically increasing efficiency.

The FlowStar™ sensor ensures accurate airflow measurement, minimizing commissioning and setup time. A calibration label and wiring diagram is located on the terminal for quick reference during start-up.

VALUE AND SECURITY

Quality. All metal components are fabricated from galvanized steel. Unlike most manufacturers' terminals, the steel used in the VFL is capable of withstanding a 125 hour salt spray test without showing any evidence of red rust.

Energy Efficiency. In addition to quiet and accurate temperature control, the building owner will benefit from lower operating costs. The highly amplified velocity pressure signal from the FlowStar™ inlet sensor allows precise airflow control at low air velocities.

The FlowStar™ sensor's airfoil shape provides minimal pressure drop across the terminal. This allows the central fan to run at a lower pressure and with less brake horsepower. Energy efficient Electronically Commutated motors are manufactured to ensure efficient, quiet, reliable, and low maintenance operation.

Fan terminals that utilize a single speed motor must rely solely on an SCR controller to obtain the reduction in fan capacity. At minimum turndown, they suffer from excessive power consumption and high motor winding temperatures, significantly reducing the motor life.

As a standard, Model VFL is available with an ECM fan motor, providing efficiency ratings between 70% and 80% for most applications.

Agency Certification Model VFL terminals, including those with electric heat, are listed with ETL as an assembly, and bear the ETL label. VFL terminals comply with applicable NEC requirements, are tested in accordance with AHRI Standard 880, and are certified by AHRI.

Agency Certification. Model VFL terminals, including those with electric heat, are listed with ETL as an assembly, and bear the ETL label.

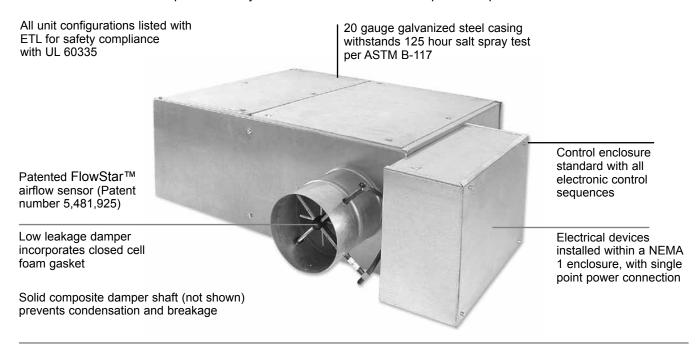
VFL terminals comply with applicable NEC requirements, are tested in accordance with AHRI Standard 880, and are certified by AHRI.

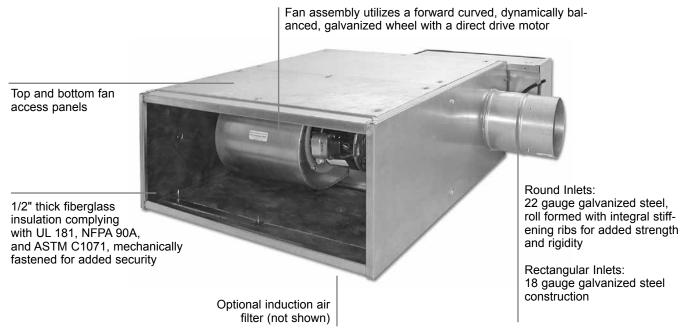
Maintenance and Service. VFL fan terminals require no periodic maintenance other than optional filter replacement. If component replacement becomes necessary, the unit is designed to minimize field labor. Both top and bottom casing panels can be removed to provide easy access to the fan assembly, and the motor electrical leads are easily unplugged.

CONTROLS

Model VFL terminals are available with the Verasys® Zone Equipment Control Assembly (ZEC). The ZEC Series Direct Digital Control (shown below) combines controller, pressure sensor, and actuator housed in one pre-assembled unit. The Mobile Access Portal (MAP) Gateway Tool (sold separately) allows for convenient configuration via direct connection to the ZEC.

ENVIRO-TEC® manufactures a complete line of controls specifically designed for use with VFL terminals. These controls are designed to accommodate a multitude of control schemes. Pneumatic Controls, and Consignment DDC controls are also available.


From the most basic to the most sophisticated sequence of operation, the controls are designed by experts in VAV terminal operation. Refer to the Electronic Controls Selection Guide, and the Pneumatic Controls Selection Guide for a complete description of the sequences and schematic drawings that are available.


Standard features include the patented FlowStar™ airflow sensor, ETL Listing, NEMA 1 enclosure, 24 volt control transformer, floating modulating actuator, balancing tees and plenum rated tubing.

MODEL VFL

The VFL terminal incorporates many standard features that are expensive options for other manufacturers.

Catalog: ET130.13-EG7 (0325)

OPTIONAL CONSTRUCTION FEATURES

- · Mounting brackets to accept all-thread hanging rods or wire hangers
- Double wall construction
- Scrim reinforced foil faced insulation meeting ASTM C1136 for mold, mildew, and humidity resistance
- · Elastomeric closed cell foam insulation
- Hot water (VFL-WC), steam, or electric heating (VFL-EH) coils
- · Factory controls: Verasys® ZEC Series DDC for BACnet, Pneumatic, or Consignment DDC Controls
- · Factory piping packages.

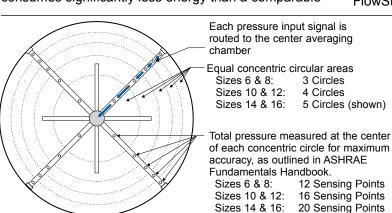
ACCURATE AND ENERGY-SAVING AIRFLOW CONTROL WITH THE PATENTED FLOWSTAR™ SENSOR

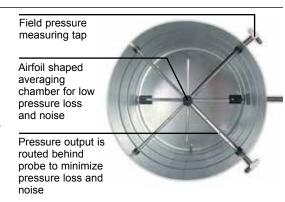
Many VAV terminals waste energy due to an inferior airflow sensor design that requires the minimum CFM setpoint to be much higher than the IAQ calculation requirement. This is common with interior spaces that will be effected year round. These interior VAV terminals waste energy in several ways. First, the primary air fan (e.g. AHU) supplies more CFM than the building requires. The higher minimum CFM setpoint overcools the zone with VAV terminals without integral heat. To maintain thermal comfort a building engineer would need to change the minimum setpoint to zero CFM compromising indoor air quality. Interior VAV terminals with integral heat provide adequate comfort in the space but waste significant energy as energy is consumed to mechanically cool the primary air only to have more energy consumed to heat the cooled primary air. Significant energy savings is obtained with proper sizing and by making sure approved VAV terminals are capable of controlling at low CFM setpoints, providing the minimum ventilation requirement.

Currently, most DDC controllers have a minimum differential pressure limitation between 0.015" and 0.05" w.g. The major DDC manufacturers can control down to 0.015" w.g. An airflow sensor that does not amplify, e.g., a Pitot tube, requires about 490 FPM to develop 0.015" w.g. differential pressure. The FlowStar™ develops 0.015" w.g. pressure with only 290 FPM on a size 6 terminal and less than 325 FPM for a size 16. Consequently, VAV terminals utilizing a non-amplifying type sensor could have minimum CFM's that are well over 50% higher than an ENVIRO-TEC terminal. Many airflow sensors provide some degree of amplification simply due to the decrease in free area of the inlet from large area of the sensor. These VAV terminals still require minimum CFM's up to 30% higher than a ENVIRO-TEC terminal, have higher sound levels, and higher pressure drop requiring additional energy consumption at the primary air fan.

A VAV system designed with ENVIRO-TEC terminals consumes significantly less energy than a comparable

system with competitor's terminals. The FlowStar™ airflow sensor reduces energy consumption by allowing lower zone minimum CFM setpoints, greatly reducing or eliminating "reheat", and by imposing less resistance on the primary air fan.


The ENVIRO-TEC air valve features the FlowStar™ airflow sensor which has brought new meaning to airflow control accuracy. The multi-axis design utilizes between 12 and 20 sensing points that sample total pressure at center points within equal concentric cross-sectional areas, effectively traversing the air stream in two planes. Each distinct pressure reading is averaged within the center chamber before exiting the sensor to the controlling device.


This sensor adds a new dimension to signal amplification. Most differential pressure sensors provide a signal between .5 and 2 times the equivalent velocity pressure signal. The FlowStar™ provides a differential pressure signal that is 2.5 to 3 times the equivalent velocity pressure signal. This amplified signal allows more accurate and stable airflow control at low airflow capacities. Low airflow control is critical for indoor air quality, reheat minimization, and preventing over cooling during light loads.

Unlike other sensors which use a large probe surface area to achieve signal amplification, the FlowStar™ utilizes an unprecedented streamline design which generates amplified signals unrivaled in the industry. The streamlined design also generates less pressure drop and noise.

The VAV schedule should specify the minimum and maximum airflow setpoints, maximum sound power levels, and maximum air pressure loss for each terminal. The specification for the VAV terminal must detail the required performance of the airflow sensor. For maximum building occupant satisfaction, the VAV system designer should specify the airflow sensor as suggested in the Guide Specifications of this catalog.

FlowStar™ Airflow Sensor Patent #5,481,925

STANDARD AND OPTIONAL FEATURES

STANDARD FEATURES

Construction

- · AHRI 880 certified and labeled
- · 20 gauge galvanized steel casing
- 1/2" thick fiberglass insulation
- Large top and bottom access openings allowing removal of complete fan assembly for all heating coil options

Fan Assembly

- Forward curved, dynamically balanced, direct drive, galvanized blower wheel
- 1115, 208/230 or 277 volt single-phase, ECM motor
- · Brushless DC
- Thermally protected motor
- · Vibration isolation motor mounts
- · Single point wiring

Primary Air Valve

- Round inlets: 22 gauge galvanized steel with embossed rigidity rings
- Rectangular inlets: 18 gauge galvanized steel construction
- · Low thermal conductance damper shaft
- · Position indicator on end of damper shaft
- · Mechanical stops for open and closed position
- FlowStar™ center averaging airflow sensor
- · Balancing tees
- · Plenum rated sensor tubing

Hot Water Coils

- Coils are designed, manufactured, and tested by ENVIRO-TEC
- · AHRI 410 certified and labeled
- 1, 2, 3, or 4 row coils
- Tested at a minimum of 450 PSIG under water and rated at 450 PSIG working pressure at 200°F
- · Left or right hand connections

Electrical

- cETL listed for safety compliance
- NEMA 1 wiring enclosure

Electric Heat

- cETL listed as an assembly for safety compliance per UL 60335
- · Integral electric heat assembly
- Automatic reset primary and back-up manual reset secondary thermal limits
- Single point power connection
- · Hinged electrical enclosure door
- · Fusing per NEC

Controls

Verasys® ZEC Series DDC for BACnet

· Pneumatic Controls

OPTIONAL FEATURES

Construction

- · Foil faced scrim backed insulation
- · Elastomeric closed cell foam insulation
- · Double wall construction with 22 gauge liner

Catalog: ET130.13-EG7 (0325)

• 1" filter rack with throwaway filter

Fan Assembly

- · ECM motors
- · EC motor controls of Solo and Sync

Electrical

- · Full unit toggle disconnect
- · Inline motor fusing
- · Primary and secondary transformer fusing

Electric Heat

- · Proportional (SSR) heater control
- · Door interlocking disconnect switches

Controls

 Consignment DDC controls (factory mount and wire controls provided by others)

Piping Packages

- Factory assembled shipped loose for field installation
- 1/2" and 3/4", 2 way, normally closed, two position electric motorized valves

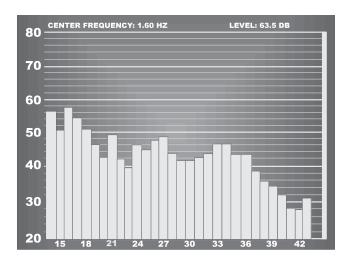
ENVIRO-TEC

- · Isolation ball valves with memory stop
- Fixed and adjustable flow control devices
- Unions and P/T ports
- · Floating point modulating control valves
- High pressure close-off actuators (1/2" = 50 PSIG; 3/4" = 25 PSIG)

6

APPLICATION AND SELECTION

PURPOSE OF PARALLEL FLOW FAN TERMINALS


Parallel flow fan powered terminals offer improved space comfort and flexibility in a wide variety of applications. Substantial operating savings can be realized through the recovery of waste heat, and night setback operation.

Heat Recovery. The VFL recovers heat from lights and core areas to offset heating loads in perimeter zones. Additional heat is available at the terminal unit using electric, steam, or hot water heating coils. Controls are available to energize remote heating devices such as wall fin, fan coils, radiant panels, and roof load plenum unit heaters.

Typical Sequences of Operation. The VFL provides variable volume, constant temperature air in the cooling mode, and constant volume, variable temperature air in the heating mode.

At the design cooling condition, the primary air valve is handling the maximum scheduled airflow capacity while the unit fan is off. As the cooling load decreases, the primary air valve throttles toward the minimum scheduled airflow capacity. A further decrease in the cooling load causes the unit fan to start, inducing warm air from the ceiling plenum which increases the discharge air temperature to the zone. When the heating load increases, the optional hot water coil or electric heater is energized to maintain comfort conditions.

IAQ. The VFL enhances the indoor air quality of a building by providing higher air volumes in the heating mode than typically provided by straight VAV single duct terminals. The higher air capacity provides greater air motion in the space and lowers the heating discharge air temperature. This combination improves air circulation,

preventing accumulation of CO² concentrations in stagnant areas. Increased air motion improves occupant comfort. The higher air capacity also improves the performance of diffusers and minimizes diffuser "dumping".

ACOUSTICAL CONCEPTS

The focus on indoor air quality is also having an effect on proper selection of air terminal equipment with respect to acoustics.

Sound Paths. At the zone level, the terminal unit generates acoustical energy that can enter the zone along two primary paths. First, sound from the unit fan can propagate through the downstream duct and diffusers before entering the zone (referred to as Discharge or Airborne Sound). Acoustical energy is also radiated from the terminal casing and travels through the ceiling cavity and ceiling system before entering the zone (referred to as Radiated Sound).

Sound Power. To properly quantify the amount of acoustical energy emanating from a terminal unit at a specific operating condition (i.e. CFM and static pressure), manufacturers must measure and publish sound power levels.

The units of measurement, decibels, actually represent units of power (watts). The terminal equipment sound power ratings provide a consistent measure of the generated sound independent of the environment in which the unit is installed. This allows a straight forward comparison of sound performance between equipment manufacturers and unit models.

Noise Criteria (NC). The bottom line acoustical criteria for most projects is the NC (Noise Criteria) level. This NC level is derived from resulting sound pressure levels in the zone. These sound pressure levels are the effect of acoustical energy (sound power levels) entering the zone caused by the terminal unit and other sound generating sources (central fan system, office equipment, outdoor environment, etc.).

The units of measurement is once again decibels; however, in this case decibels represent units of pressure (Pascals), since the human ear and microphones react to pressure variations.

There is no direct relationship between sound power levels and sound pressure levels. Therefore, we must predict the resulting sound pressure levels (NC levels) in the zone based in part by the published sound power levels of the terminal equipment. The NC levels are totally dependent on the project specific design, archi-

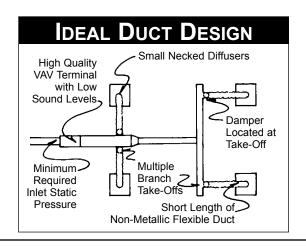
APPLICATION AND SELECTION

tecturally and mechanically. For a constant operating condition (fixed sound power levels), the resulting NC level in the zone will vary from one project to another.

AHRI 885. A useful tool to aid in predicting space sound pressure levels is an application standard referred to as AHRI Standard 885. This standard provides information (tables, formulas, etc.) required to calculate the attenuation of the ductwork, ceiling cavity, ceiling system, and conditioned space below a terminal unit. These attenuation values are referred to as the "transfer function" since they are used to transfer from the manufacturer's sound power levels to the estimated sound pressure levels resulting in the space below, and/ or served by the terminal unit. The standard does not provide all of the necessary information to accommodate every conceivable design; however, it does provide enough information to approximate the transfer function for most applications. Furthermore, an Appendix is provided that contains typical attenuation values. Some manufacturers utilize different assumptions with respect to a "typical" project design; therefore, cataloged NC levels should not be used to compare acoustical performance. Only certified sound power levels should be used for this purpose.

GENERAL DESIGN RECOMMENDATIONS FOR A QUIET SYSTEM

The AHU. Sound levels in the zone are frequently impacted by central fan discharge noise that either breaks out (radiates) from the ductwork or travels through the distribution ductwork and enters the zone as airborne (discharge) sound. Achieving acceptable sound levels in the zone begins with a properly designed central fan system which delivers relatively quiet air to each zone.


Supply Duct Pressure. One primary factor contributing to noisy systems is high static pressure in the primary air duct. This condition causes higher sound levels from the central fan and also higher sound levels from the terminal unit, as the primary air valve closes to reduce the pressure. This condition is compounded when flexible duct is utilized at the terminal inlet, which allows the central fan noise and air valve noise to break out into the ceiling cavity and then enter the zone located below the terminal. Ideally, the system static pressure should be reduced to the point where the terminal unit installed on the duct run associated with the highest pressure drop has the minimum required inlet pressure to deliver the design airflow to the zone. For systems that will have substantially higher pressure variances from one zone to another, special attention should be paid to the proper selection of air terminal equipment.

To date, the most common approach has been to select (size) all of the terminals based on the worst case (highest inlet static pressure) condition. Typically, this results in 80% (or higher) of the terminal units being oversized for their application. This in turn results in much higher equipment costs, but more importantly, drastically reduced operating efficiency of each unit. This consequently decreases the ability to provide comfort control in the zone. In addition, the oversized terminals cannot adequately control the minimum ventilation capacity required in the heating mode.

A more prudent approach is to utilize a pressure reducing device upstream of the terminal unit on those few zones closest to the central fan. This device could simply be a manual quadrant type damper if located well upstream of the terminal inlet. In tight quarters, perforated metal can be utilized as a quiet means of reducing system pressure. This approach allows all of the terminal units to experience a similar (lower) inlet pressure. They can be selected in a consistent manner at lower inlet pressure conditions that will allow more optimally sized units.

Inlet Duct Configuration. Inlet duct that is the same size as the inlet collar and as straight as possible will achieve the best acoustical performance. For critical applications, flexible duct should not be utilized at the terminal inlet.

Downstream Duct Design. On projects where internal lining of the downstream duct is not permitted, special considerations should be made to assure acceptable noise levels will be obtained. In these cases, a greater number of smaller zones will help in reducing sound levels. Where possible, the first diffuser takeoff should be located after an elbow or tee and a greater number of small necked diffusers should be utilized, rather than fewer large necked diffusers.

The downstream ductwork should be carefully designed and installed to avoid noise regeneration. Bull head tee arrangements should be located sufficiently downstream of the terminal discharge to provide an established flow pattern downstream of the fan. Place diffusers downstream of the terminal after the airflow has completely developed.

Downstream splitter dampers can cause noise problems if placed too close to the terminal, or when excessive air velocities exist. If tee arrangements are employed, volume dampers should be used in each branch of the tee, and balancing dampers should be provided at each diffuser tap. This arrangement provides maximum flexibility in quiet balancing of the system. Casing radiated sound usually dictates the overall room sound levels directly below the terminal. Because of this, special consideration should be given to the location of these terminals as well as to the size of the zone. Larger zones should have the terminal located over a corridor or open plan office space and not over a small confined private office. Fan powered terminals should never be installed over small occupied spaces where the wall partitions extend from slab-toslab (i.e. fire walls or privacy walls).

Fan Terminal Isolation. Model VFL fan terminals are equipped with sufficient internal vibration dampening means to prevent the need for additional external isolation. Flexible duct connectors at the unit discharge typically do more harm than good. The sagging membrane causes higher air velocities and turbulence, which translates into noise. Furthermore, the discharge noise breaks out of this fitting more than with a hard sheet metal fitting.

SELECTION GUIDELINES

The VFL product line is designed to provide flexibility in matching primary air valve capacities (cooling loads) with unit fan capacities (heating loads). The VFL model code consists of two pairs of two digit numbers (e.g. 0805). The first two digits describe the primary air valve size (diameter in nominal inches), while the second pair refers to the unit fan capacity (hundreds of CFM) and overall physical size of the unit. Each unit fan size is available with two or more primary air valve sizes. This allows the heating airflow capacity (fan CFM) to be selected over a wide range of design airflow capacities (maximum primary CFM). This accommodates applications where the fan CFM needs to be only 15 to 20% of design capacity, and applications where the fan CFM must be 50 to 70% of design CFM.

The unit fan size should be selected first by cross plotting the specified fan capacity and external static pressure on the appropriate fan performance curves. Terminals utilizing hot water heating coils require the summation of the coil air pressure drop and the design E.S.P. to determine the total E.S.P. It is common to have more than one fan size which can meet the design requirements. Typically, the selection begins with the smallest fan that can meet the capacity. Occasionally, this selection may not meet the acoustical requirements and thus, the next larger fan size would be selected.

Fan selections can be made anywhere in the nonshaded areas. Each fan performance curve depicts the actual performance of the relative motor tap without any additional fan balance adjustment. Actual specified capacities which fall below a particular fan curve (low, medium, or high) are obtained by adjustment of the electronic (SCR) fan speed controller.

The primary air valve is selected next. Typically, the primary air valve sound is insignificant relative to the unit fan sound performance. The selection process involves choosing an air valve size that is as small as possible while yielding acceptable sound levels and pressure drop. For non-acoustically sensitive applications such as shopping malls and airports, the primary air valve can be sized at the maximum rated capacity.

SYSTEM PRESSURE CONSIDERATIONS

The central fan is required to produce sufficient inlet static pressure to force the air through the primary air valve, unit casing, downstream ductwork and fittings, and diffusers with the unit fan off. The VFL has been designed to reduce central fan power consumption by placing the optional hot water heating coil in the induction air stream, eliminating the coil from these central system pressure considerations.

The industry standard for testing and rating air terminal units (AHRI 880) requires that published pressure drop performance be measured with hard, straight, unlined duct entering and leaving the terminal unit. On many projects, due to the limited available space, terminal units are not installed in this optimum manner. Frequently, flexible duct is used at the terminal inlet and a metal transition is utilized at the discharge. The entrance and exit losses in these instances exceed the actual terminal unit pressure loss. It is important to consider terminal unit pressure loss as well as those losses associated with the entire distribution ductwork (as outlined in applicable ASHRAE Handbooks) when sizing central system fan requirements.

GENERAL SELECTION DATA

PRIMARY AIR VALVE

UNIT	OEM	Min ∆Ps		ROOM	/ NOISE	CRITERI	A (NC)	
SIZE	CFM	(IN. W.G.)	0.5" W	.G. ∆Ps	1.0" W	.G. ΔPs	3.0" W	.G. ΔPs
			Disch.	Rad.	Disch.	Rad.	Disch.	Rad.
	100	0.01				20		28
0405	150	0.02		22		27	24	31
0405	200	0.02		26	23	29	29	36
	250	0.03	23	30	26	33	34	39
	100	0.01						23
0505	200	0.01				23	20	30
0505	300	0.02		25		29	28	36
	350	0.02		28		33	29	39
	200	0.03				-		23
	250	0.04	-			20	21	28
0605	300	0.06				23	22	30
0005	350	0.09		22		27	24	31
	450	0.15	21	26	24	29	29	36
	550	0.22	26	30	30	33	34	39
	300	0.02					21	23
	400	0.03				20	24	28
0805	500	0.04			21	23	27	30
0000	600	0.05		22	23	27	30	31
	800	0.10	21	26	25	29	33	36
	1000	0.15	24	30	29	33	36	39
	600	0.03				22	29	33
	800	0.05				23	33	36
1009	1000	0.08		20	21	25	36	38
	1200	0.12		26	22	29	37	40
	1400	0.16		29	22	30	38	43
	1600	0.21	20	34	22	33	39	44
	800	0.03				21	21	30
	1100	0.06			21	22	33	36
1209	1400 1700	0.09 0.13		22 27	21 21	25 28	36 37	38 39
	2000	0.13		29	22	30	38	43
	2300	0.19	20	34	22	33	39	43
	800	0.27			20		39	30
	1100	0.03			21	23	34	31
	1400	0.09			21	25	35	33
1215	1700	0.09		22	22	27	36	36
	2000	0.19		29	21	30	38	38
	2300	0.27	20	30	21	30	39	41
	1200	0.05			22	22	27	31
	1500	0.09			23	24	33	32
	1800	0.13		20	23	25	39	34
1415	2100	0.18		21	25	27	39	36
	2400	0.25		23	26	28	39	37
	2700	0.32	20	30	27	30	39	38
	3000	0.41	21	32	28	30	40	41

FAN

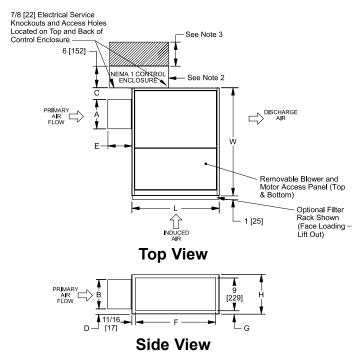
UNIT SIZE	FAN		E CRITERIA C)
ONIT SIZE	CFM	Discharge	Radiated
0405	200		22
0505	300	-	28
0605	400	-	31
0805	500	-	34
	300		25
	400	-	27
1009	500	-	30
1209	600		33
1209	700		36
	800	21	37
	900	25	38
	600		31
	700	1	33
	800	-	35
1215	900	-	37
1415	1000	20	38
1415	1100	21	38
	1200	23	39
	1300	25	40
	1400	26	41

NOTES:

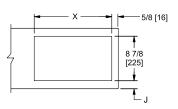
- Min. ΔPs is the static pressure difference between the terminal inlet and discharge with the damper wide open. Data is applicable to units with or without optional heater.
- Performance data obtained from tests conducted in accordance with AHRI Standard 880.
- Dash (-) indicates NC level less than 20.
- NC values are calculated using attenuation values provided in appendix E of AHRI 885-2008, as shown below.
- NC (sound pressure) levels predicted by subtracting appropriate values below from published sound power levels (following pages).

DISCHARGE		OC	TAV	E BA	ND	
ATTENUATION VALUES	2	3	4	5	6	7
Small Box (< 300 CFM)	24	28	39	53	59	40
Medium Box (300-700 CFM)	27	29	40	51	53	39
Large Box (> 700 CFM)	29	30	41	51	52	39

RADIATED		ОС	TAV	E BA	ND	
ATTENUATION VALUES	2	3	4	5	6	7
Type 2 - Mineral Fiber Ceiling	18	19	20	26	31	36


HORSEPOWER / AMPERAGE DATA

	EVN H	ORSEP	OWED				Α	MPERA	GE				
UNIT SIZE	I AN II	ONSE	OVVLIX		115V			208V		277V			
	LOW	MED	HI	LOW	MED	HI	LOW	MED	HI	LOW	MED	HI	
0405, 0505, 0605, 0805	1/50	1/20	1/8	8.0	1.3	1.7	0.3	0.6	0.9	0.32	0.5	0.68	
1009, 1209	1/12	1/6	1/4	2.5	2.8	3.5	1.0	1.3	1.6	0.9	1.1	1.3	
1215, 1415	1/4	1/3	1/2	3.1	3.7	5.8	1.4	1.7	2.7	1.1	1.5	2.2	

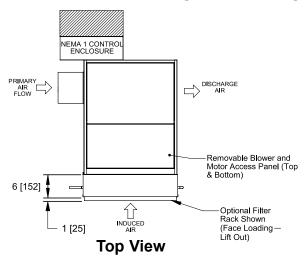

DIMENSIONAL DATA

MODEL VFL

Drawings are not to scale and not for submittal or installation purposes.

UNIT	Α	В	С	D	Е	F	G	J	х	w	L	н
0405	3 7/8¢ [98]	3 7/8φ [98]	5 1/8 [130]	3 3/8 [86]	10 1/2 [267]	22 1/8 [562]	13/16 [21]	7/8 [22]	13 5/8 [346]			
0505	4 7/8φ [124]	4 7/8φ [124]	4 5/8 [117]	2 7/8 [73]	10 1/2 [267]	22 1/8 [562]	13/16 [21]	7/8 [22]	13 5/8 [346]	29	23 1/2	
0605	5 7/8φ [149]	5 7/8φ [149]	4 1/8 [105]	2 3/8 [60]	6 1/2 [165]	22 1/8 [562]	13/16 [21]	7/8 [22]	13 5/8 [346]	[737]	[597]	10 5/8
0805	7 7/8φ [200]	7 7/8φ [200]	3 1/8 [79]	1 3/8 [35]	6 1/2 [165]	22 1/8 [562]	13/16 [21]	7/8 [22]	13 5/8 [346]			[270]
1009	10 [254]	8 [203]	2 1/2 [64]	1 5/16 [33]	6 1/2 [165]	34 5/8 [879]	13/16 [21]	7/8 [22]	16 [406]	36	36	
1209	14 [356]	8 [203]	2 1/2 [64]	1 5/16 [33]	6 1/2 [165]	34 5/8 [879]	13/16 [21]	7/8 [22]	16 [406]	[914]	[914]	
1215	14 [356]	8 [203]	2 1/2 [64]	2 [51]	6 1/2 [165]	38 5/8 [981]	1 1/2 [38]	1 9/16 [40]	20 [508]	40	40	12
1415	14 [356]	10 [254]	2 1/2 [64]	1 [25]	6 1/2 [165]	38 5/8 [981]	1 1/2 [38]	1 9/16 [40]	20 [508]	[1016]	[1016]	[305]

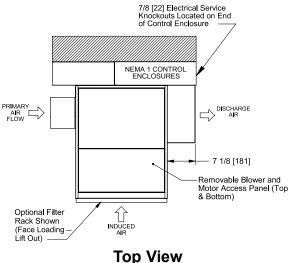
Discharge Air Opening Detail


		UNIT W	/EIGHT						
UNIT SIZE	V	FL	VFL-EH						
UNIT SIZE	Single Wall	Double Wall	Single Wall	Double Wall					
0405 0505	vvali	VVali	VVali	vvaii					
0405, 0505,	58 [26]	72 [33]	77 [35]	91 [41]					
0605, 0805		11	1						
1009, 1209	86 [39]	109 [49]	107 [49]	130 [59]					
1215, 1415	118 [54]	152 [69]	141 [64]	175 [79]					

NOTE: Unit weights are in pounds [kg]. Refer to submittal drawings for hot water coil weights on Model VFL-WC.

Notes (applicable to VFL, VFL-WC, and VFL-EH):

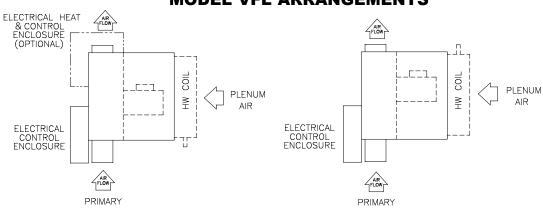
- Sizes 0405, 0505, 0605, and 0805 have round inlets. Sizes 1009, 1209, 1215, and 1415 have rectangular inlets.
- 2. Control enclosure is standard with factory mounted electronic controls.
- Check all national and local codes for required clearances.
- 4. All dimensions are in inches [mm].
- 5. Arrangement #1 shown. See next page for other control and heater handing arrangements.


MODEL VFL-WC (HOT WATER COIL)

DIMENSIONAL DATA

MODEL VFL-EH (ELECTRIC HEAT)

Drawings are not to scale and not for submittal or installation purposes.

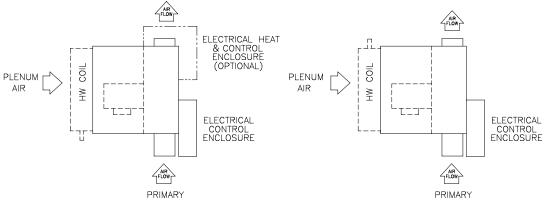


Discharge Air Opening Detail

UNIT SIZE	К
0405, 0505, 0605,	1 5/16
0805, 1009, 1209	[33]
1215, 1415	2 [51]

0405, 0

MODEL VFL ARRANGEMENTS



ARRANGEMENT 1

Left Hand Control Unit With Left Hand Hot Water Coil or Left Hand Electric Heat

ARRANGEMENT 2

Left Hand Control Unit With Right Hand Hot Water Coil

ARRANGEMENT 3

Right Hand Control Unit With Right Hand Hot Water Coil or Right Hand Electric Heat

ARRANGEMENT 4

Right Hand Control Unit With Left Hand Hot Water Coil

SOUND POWER DATA

PRIMARY AIR VALVE, DISCHARGE

LINUT	UNIT SIZE CFM OCTAVE BAND NUMI					Ps		1.0" W.G. ∆Ps OCTAVE BAND NUMBER							1.	.5" W.	.G. ΔF	Ps		3.0" W.G. ΔPs					
-	CFM	0	CTAV	/E BA	ND N	UMBE	R	0	CTAV	/E BA	ND N	UMBE	R	0	CTAV	/E BA	ND N	UMBE	R	О	CTA	/E BA	ND N	UMBE	R
SIZE		2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7
	100	56	53	43	36	32	29	57	55	48	41	36	32	57	55	49	42	38	35	59	56	51	46	46	43
	150	58	56	46	40	35	32	60	60	52	44	40	36	61	61	53	46	42	38	65	64	57	50	49	46
0405	200	61	60	49	43	38	35	64	63	54	47	43	39	65	64	55	48	42	41	70	68	60	52	41	48
	250	65	63	52	47	41	38	68	66	57	50	45	41	65	64	55	48	42	41	74	72	63	54	52	50
	100	51	47	43	36	33	30	52	48	47	42	38	34	54	50	48	43	40	36	57	50	49	47	48	45
0505	200	55	50	45	40	36	33	58	54	50	44	41	37	60	57	52	46	43	39	64	59	56	52	51	48
0505	300	62	57	50	45	40	36	63	59	54	48	44	40	65	61	55	49	43	42	70	65	60	54	52	49
	350	64	59	53	48	43	39	66	61	56	51	46	42	68	64	58	52	48	44	72	67	62	56	54	51
	200	55	48	43	36	33	30	57	52	48	42	38	34	59	54	50	43	40	36	62	57	54	50	48	45
	250	57	51	44	38	34	31	59	54	49	43	38	34	61	55	51	45	40	37	65	60	56	51	48	45
	300	58	53	46	40	34	31	62	56	51	44	39	35	63	57	53	46	42	38	67	62	57	51	49	46
0605	350	63	55	48	41	38	34	65	59	53	46	41	37	66	60	55	48	43	39	70	64	60	52	49	46
	400	65	57	51	44	40	36	67	61	55	48	43	38	70	64	57	52	47	45	72	66	61	53	50	47
	450	68	60	53	46	42	38	70	62	57	49	45	40	71	64	59	52	47	45	74	68	63	54	51	48
	550	72	63	56	50	45	41	75	67	61	53	49	44	76	68	63	54	51	46	78	71	66	57	54	51
	300	58	51	47	43	38	34	62	56	53	49	42	39	63	57	54	51	44	41	68	61	59	56	51	49
	400	61	53	48	44	39	34	65	58	53	49	44	40	66	60	55	51	46	43	70	64	64	59	53	51
	500	64	56	50	45	42	36	68	60	55	50	47	42	69	62	57	53	49	45	73	67	65	59	55	52
0805	600	65	58	52	47	44	38	69	63	56	52	49	43	71	65	59	54	51	46	75	69	67	60	57	54
	700	67	60	54	49	46	40	71	64	58	53	51	45	74	67	61	57	54	48	77	71	67	62	59	55
	800	70	62	56	51	48	42	73	65	60	54	53	47	74	67	62	57	55	49	79	73	68	63	61	56
	1000	72	64	60	55	51	46	76	68	63	57	55	50	77	70	65	59	57	52	82	75	71	64	63	58
	600	59	51	48	43	41	38	66	60	53	48	47	47	68	62	54	49	48	47	73	70	64	57	55	57
	800	60	53	49	44	42	39	68	61	54	49	48	48	70	62	55	49	48	48	75	73	66	58	56	59
	1000	61	55	50	45	43	40	70	62	55	50	49	48	72	63	55	50	49	48	77	76	68	59	57	61
1009	1100	61	57	53	46	44	40	70	62	55	50	49	48	72	63	55	50	49	48	79	77	68	60	58	62
	1200	61	58	56	47	44	41	70	62	56	50	49	50	73	66	59	53	52	53	81	77	68	60	58	63
	1400	62	59	62	50	46	43	70	64	58	51	50	51	73	68	61	53	52	54	83	78	68	60	59	64
	1600	65	60	67	54	50	48	70	65	66	53	52	52	73	68	66	55	54	55	84	78	68	61	59	64
	800	59	51	46	43	40	36	64	59	51	47	47	44	65	60	54	51	49	46	68	63	62	62	55	54
	1100	61	53	48	45	43	39	69	62	53	49	48	47	71	65	56	51	51	50	74	73	67	58	57	59
4000	1400	61	55	49	45	43	40	70	62	55	49	49	48	71	65	58	52	51	51	76	76	68	58	57	60
1209	1550	61	56	51	46	43	40	70	62	55	50	49	48	75	68	60	53	53	55	78	77	68	58	58	61
	1700	61	57	54	46	43	41	70	62	56	50	49	49	75	68	60	53	53	55	80	77	68	59	58	62
	2000	62	59	62	50	46	43	70	64	58	51	50	51	76	68	61	53	54	55	83	78	68	60	59	64
	2300	65	60	67	54	50	48	70	65	66	53	52	52	76	69	66	55	54	56	84	78	68	61	59	64 58
	800	61 61	52 52	48 49	44 45	42 43	39 40	69 70	61 61	52 53	48 49	48 49	47 48	70 71	63 64	56 57	51 51	50 51	49 51	73 75	71	67 68	59 58	57 57	60
	1100 1400	61	52 54	50	45	43	40	70	61	55	50	49	48	72	65	58	52	51	52	77	75	68	59	57	61
1215	1550	61	56	53	46	44	40	70	61	55	50	49	50	72	65	58	52	52	54	79	76	68	60	58	62
1213	1700	61	59	56	47	44	41	70	61	56	50	49	50	73	65	59	53	52	54	81	76	68	60	58	63
	2000	62	59	62	50	46	43	70	63	58	51	50	51	73	67	61	53	52	54	83	77	68	60	59	64
	2300	65	59	67	54	50	48	70	64	66	53	52	52	73	67	66	55	54	55	84	77	68	61	59	64
	1200	63	55	49	46	44	41	71	63	53	49	48	47	71	64	57	52	51	50	71	69	66	59	58	59
	1500	63	55	50	46	43	42	71	64	55	50	49	49	72	67	58	52	52	52	74	73	68	59	58	60
	1800	64	56	53	46	44	42	72	64	56	50	50	49	73	68	60	53	52	52	78	79	70	60	59	61
	1925	65	57	53	46	44	43	72	64	57	50	50	49	73	68	61	55	54	56	80	79	70	60	59	61
1415	2100	66	58	54	47	45	43	73	64	58	51	50	50	75	68	61	55	54	56	83	79	70	61	59	62
					_			_				_									_		_		_
	2400	67	62	57	48	46	45	74	65	59	52	50	51	76	69	62	55	54	56	84	79	70	61	59	62
	2700	67	63	60	51	47	45	74	66	61	53	51	51	77	69	63	55	55	57	84	79	70	62	60	63
	3000	68	64	61	55	49	47	75	67	64	55	52	52	78	70	66	57	55	57	85	79	70	62	60	63

- Data obtained from tests conducted in accordance with AHRI Standard 880.

- Sound levels are expressed in decibels, dB re: 1 x 10⁻¹² Watts.
 ΔPs is the difference in static pressure across the primary air valve.
 Duct end corrections included in sound power levels per AHRI Standard 880.
- · Certified AHRI data is highlighted blue. Application data (not highlighted blue) is outside the scope of the certification program.

SOUND POWER DATA

PRIMARY AIR VALVE, RADIATED

Catalog: ET130.13-EG7 (0325)

UNIT			0	.5" W.	.G. ΔF	s			1	.0" W	.G. ∆F	's			1	.5" W	.G. ΔF	^o s			3	.0" W	.G. ∆F	s	
SIZE	CFM	0	CTAV	/E BA	ND N	UMBE	R	0	CTAV	/E BA	ND N	JMBE	R	0	CTA	/E BA	ND N	UMBE	R	0	CTAV	E BA	ND N	JMBE	R
SIZE		2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7
	100	55	45	40	34	31	31	58	47	43	36	32	31	60	49	45	38	34	32	64	56	52	44	39	35
0405	150	60	49	43	37	33	32	63	52	47	41	36	33	64	54	49	42	37	34	67	60	56	47	41	36
0400	200	63	53	49	39	34	32	65	56	52	43	38	33	66	58	54	44	40	34	71	64	59	49	45	37
	250	66	56	53	44	37	32	68	59	56	46	39	33	66	58	54	44	40	34	73	66	61	52	48	40
	100	52	40	38	34	31	30	56	45	41	35	31	31	57	46	43	36	32	32	60	50	48	40	36	33
0505	200	56	44	41	35	33	31	60	50	46	38	35	32	61	52	48	40	36	33	65	58	55	45	39	35
	300	62	52	46	38	34	31	65	56	52	42	38	33	66	58	54	44	40	34	71	64	59	49	45	37
	350	64 52	54	50	41	36	32	68	59	55	45	38	33	69 57	61	57	47	41	34	73	67	62	52	49	38
	200 250	55	40 42	38 40	34	31 31	30	56 58	45 47	41	35 36	31 32	31	_	46 49	44 45	38 38	33 34	32 32	60 64	50 56	48 52	40 44	36 39	33
	300	56	44	41	35	33	31 31	60	50	46	38	35	31 32	60 61	52	48	40	36	33	65	58	55	45	39	35 35
0605	350	60	49	43	37	33	32	63	52	47	41	36	33	64	54	49	42	37	34	67	60	56	47	41	36
0003	400	62	51	46	38	34	32	64	54	50	42	37	33	66	58	54	44	40	36	69	62	58	48	43	36
	450	63	53	49	39	34	32	65	56	52	42	38	33	67	59	55	44	40	36	71	64	59	49	45	37
	550	66	56	53	44	37	32	68	59	56	46	39	33	69	61	57	47	41	37	73	66	61	52	48	41
	300	52	40	40	34	31	30	56	45	41	35	31	31	57	46	43	36	32	32	60	50	48	40	36	33
	400	55	42	40	34	31	31	58	47	43	36	32	31	60	49	45	38	34	32	64	56	52	44	39	35
	500	56	44	40	35	33	31	60	50	46	38	35	33	61	52	48	40	36	34	65	58	55	45	39	35
0805	600	60	49	43	37	33	32	63	52	47	41	36	33	64	53	49	41	37	33	67	60	56	47	41	36
	700	62	51	46	38	34	32	64	54	48	39	37	33	64	54	49	41	37	33	69	62	58	48	43	36
	800	63	53	49	39	34	32	65	56	52	42	38	33	66	58	54	44	40	34	71	64	59	49	45	37
	1000	66	56	53	44	37	32	68	59	56	46	39	33	69	61	57	48	41	35	73	66	61	52	48	41
	600	54	46	36	37	35	31	56	53	39	38	37	32	58	55	43	39	37	34	64	62	54	47	44	41
	800	56	49	42	37	35	32	59	55	44	39	37	33	61	55	45	40	38	35	67	65	55	47	43	41
4000	1000	57	52	46	38	35	33	62	55	46	40	37	34	62	55	46	40	38	36	71	67	57	48	43	41
1009	1100	58	53	46	40	36	34	62	55	46	40	38	34	62	55	46	40	39	39	72 74	68	58	48	44	42
	1200 1400	59 62	54 55	52 54	41 46	37 39	34 35	65 66	57 59	52 54	43 45	39 40	35 36	67 68	60 62	54 56	44	40	37 38	76	68 69	57 59	49 50	44	42
	1600	66	60	59	50	42	36	67	60	58	49	43	37	70	62	58	50	41	38	77	69	60	52	45	43
	800	54	47	39	36	35	32	59	52	42	38	36	33	60	54	45	40	38	35	64	60	53	47	42	40
	1100	55	48	42	37	35	32	59	54	43	38	36	33	61	57	46	40	38	35	67	65	55	47	43	41
	1400	57	51	48	39	35	33	62	56	49	40	38	34	64	59	51	42	39	36	70	67	56	47	43	41
1209	1550	58	52	50	40	36	34	63	57	50	41	38	34	67	60	52	43	39	37	72	68	56	48	44	42
	1700	59	54	52	42	37	34	64	58	52	42	39	35	67	60	53	44	40	37	73	68	57	49	44	42
	2000	62	55	54	46	39	35	66	59	54	45	40	36	68	62	56	46	41	38	76	69	59	50	45	43
	2300	66	60	59	50	42	36	67	60	58	49	43	37	70	62	58	50	44	38	77	69	60	52	47	43
	800	52	47	42	36	36	37	56	51	44	38	37	38	57	53	46	41	39	39	60	58	55	49	45	44
	1100	55	49	43	37	37	38	58	54	46	40	39	39	59	56	47	42	40	40	63	61	56	50	47	46
	1400	56	50	45	38	37	38	61	56	47	41	40	40	62	56	47	42	40	40	66	63	58	51	48	47
1215	1550	57	51	46	39	38	38	62	56	47	42	40	40	62	56	47	43	40	40	68	64	59	52	48	48
	1700	58	52	48	40	38	38	64	57	50	43	41	40	65	59	52	46	43	42	69	65	60	53	49	48
	2000	59	55	54	43	40	39	66	59	53	45	43	41	68	61	55	47	45	43	72	67	61	54	50	49
	2300	61	56	55	45	43	41	66	60	55	47	45	42	68	62	57	49	46	44	74	70	62	55	51	49
	1200 1500	54 56	48 49	43 44	38 37	37 37	37 38	57	53 55	45 46	40	39 39	39 39	58 60	55 57	48 49	41 42	40	39 39	62 65	61 62	56 57	50 51	46 47	46 46
					_			59			_				_						_	_	_		
	1800	57	50	46	38	37	38	62	56	49	41	40	40	63	58	49	42	41	40	67	63	58	52	48	47
1415	1925	57	51	46	38	37	38	63	56	49	42	40	40	65	58	50	43	41	40	68	64	58	52	48	47
	2100	58	52	47	39	38	38	64	57	50	43	40	40	65	59	52	45	42	42	69	65	59	52	49	48
	2400	58	53	49	40	39	39	65	58	51	44	41	41	66	60	53	46	43	43	70	66	60	53	49	48
	2700	59	55	55	43	40	39	66	59	53	45	43	41	68	61	55	47	45	43	72	67	61	54	50	49
	3000	62	57	57	46	43	41	66	60	55	47	45	42	68	62	57	49	46	44	74	70	62	55	51	49

NOTES:

- Data obtained from tests conducted in accordance with AHRI Standard 880.
- Sound levels are expressed in decibels, dB re: 1 x 10⁻¹² Watts.
- ΔPs is the difference in static pressure across the primary air valve.
 Certified AHRI data is highlighted blue. Application data (not highlighted blue) is outside the scope of the certification pro-

SOUND POWER DATA, AHRI RATINGS

UNIT FAN ONLY

UNIT		DIS	SCHARG	GE SOU	ND POV	VER DA	TA	R	ADIATE	D SOUN	ND POW	'ER DA	ГА
SIZE	CFM		OC.	TAVE BA	ND NUM	BER			OC.	TAVE BA	MD NUM	BER	
SIZE		2	3	4	5	6	7	2	3	4	5	6	7
	200	58	51	47	42	39	33	58	52	48	42	33	32
0405, 0505,	300	62	54	49	46	41	36	60	57	53	46	39	36
	400	63	57	50	50	42	38	63	60	56	49	42	41
0605, 0805	450	65	57	51	53	43	38	65	62	57	51	44	43
	500	65	58	52	53	45	40	66	63	58	51	45	44
	300	58	53	47	43	40	37	58	56	50	43	40	39
	400	60	54	48	45	41	37	60	58	51	45	40	39
4000	500	60	54	48	45	41	37	61	60	53	48	41	39
1009	600	63	59	51	50	45	40	63	62	55	50	46	42
1209	700	64	61	52	51	46	41	64	65	58	54	49	46
	800	65	64	53	52	48	43	67	66	60	56	52	49
	850	68	66	55	54	49	46	68	67	61	56	52	50
	900	67	67	55	55	50	46	69	67	62	57	53	50
	600	62	54	49	46	42	38	62	61	53	45	41	40
	700	63	55	50	47	42	40	64	63	55	47	44	42
	800	65	57	51	49	43	41	65	64	57	49	46	44
	900	67	59	53	51	45	43	67	66	59	51	48	46
1215	1000	69	61	55	53	47	46	68	67	60	53	50	48
1415	1100	70	62	56	54	48	47	69	67	62	54	51	50
	1200	71	63	57	55	49	48	70	68	63	55	53	52
	1300	73	65	59	57	51	50	71	69	64	57	55	53
	1400	74	67	61	59	53	53	72	70	65	58	56	55
	1450	75	68	62	60	54	53	73	72	66	59	57	56

NOTES:

- Data obtained from tests conducted in accordance with AHRI Standard 880.
- Sound levels are expressed in decibels, dB re: 1 x 10⁻¹² Watts.
- Fan external static pressure is 0.25" w.g.
- Duct end corrections included in sound power levels per AHRI Standard 880.
- · Certified AHRI data is highlighted blue. Application data (not highlighted blue) is outside the scope of the certification program.

AHRI RATINGS: FAN PERFORMANCE

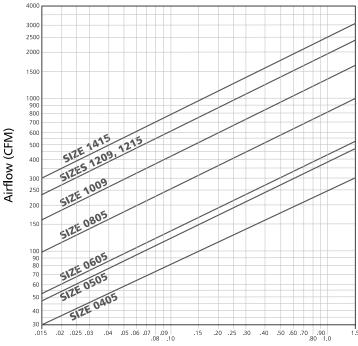
					S	DUND I	POWE	R LEVE	EL, dB	re: 10 ⁻¹	¹² WAT	TS			
UNIT	FAN	POWER	DISCHARGE						RADIATED						
SIZE	CFM	(WATTS)	OCTAVE BAND NUMBER							OCT	AVE BA	ND NUN	/IBER		
		, , ,	2	3	4	5	6	7	2	3	4	5	6	7	
0605	450	202	65	57	51	53	43	38	65	62	57	51	44	43	
0805	450	202	65	57	51	53	43	38	65	62	57	51	44	43	
1009	850	268	68	66	55	54	49	46	68	67	61	56	52	50	
1209	850	268	68	66	55	54	49	46	68	67	61	56	52	50	
1215	1450	585	75 68 62 60 54 53						73	72	66	59	57	56	
1415	1450	585	75 68 62 60 54 53					53	73	72	66	59	57	56	

NOTE: Fan external static pressure is 0.25" w.g.

• Duct end corrections included in sound power levels per AHRI Standard 880.

AHRI RATINGS: PRIMARY AIR VALVE PERFORMANCE

	DD!!!!D!	MIN. OPER.	SOUND POWER LEVEL, dB re: 10 ⁻¹² WATTS												
UNIT	PRIMARY	PRESSURE		DISCHARGE OCTAVE BAND NUMBER							RADI	ATED			
SIZE	CFM								OCTAVE BAND NUMBER						
		(In. Water)	2	3	4	5	6	7	2	3	4	5	6	7	
0605	400	0.12	70	64	57	52	47	45	66	58	54	44	40	36	
0805	700	0.08	74	67	61	57	54	48	64	54	49	41	37	33	
1009	1100	0.11	72	63	55	50	49	48	62	55	46	40	39	39	
1209	1550	0.12	75	68	60	53	53	55	67	60	52	43	39	37	
1215	1550	0.12	72	65	58	52	52	54	62	56	47	43	40	40	
1415	1925	0.16	73	73 68 61 55 54 56				56	65	58	50	43	41	40	


NOTE: Inlet static pressure is 1.5" w.g.

[•] Duct end corrections included in sound power levels per AHRI Standard 880.

PRIMARY AIRFLOW CALIBRATION

FLOWSTAR™ CALIBRATION CHART

(For dead-end differential pressure transducers)

NOTE: Maximum and minimum CFM limits are dependent on the type of controls that are utilized. Refer to the table below when the controls are furnished by ENVIRO-TEC. When DDC controls are furnished by others, the CFM limits are dependent on the specific control vendor that is employed. After obtaining the differential pressure range from the control vendor, the maximum and minimum CFM limits can be obtained from the chart above (many controllers are capable of controlling minimum setpoint down to .015" w.g.).

Probe Differential Pressure (in. w.g.)

AIRFLOW RANGES (CFM)

	(PNEU STAN	ERIES MATIC) DARD COLLER		S ANALOG RONIC	DE			ENT CONT es Below)	ROLS	
UNIT SIZE	MIN.	MAX.	MIN.	MAX.	differe	MIN. transd ntial pro (in.w.g.)	essure	MAX. Max. transducer differential pressure (in.w.g.)		
					0.015 0.03 0.05			1.0	>=1.5	
0405	43	250	35	250	30	43	55	250	250	
0505	68	350	50	350	48	68	88	350	350	
0605	75	490	60	550	53	75	97	435	530	
0805	145	960	115	1000	105 145 190			840	1000	
1009	235	1545	170	1600	170 235 305			1370	1600	
1209, 1215	340	2250	240	2300	240 340 435 195				5 2300	
1415	430	2835	305	3045	305	430	555	2485	3000	

NOTES:

- Minimum and maximum airflow limits are dependent on the specific DDC controller supplied. Contact the control vendor
 to obtain the minimum and maximum differential pressure limits (inches W.G.) of the transducer utilized with the DDC
 controller.
- 2. Maximum CFM is limited to value shown in General Selection Data.

Catalog: ET130.13-EG7 (0325)

NOTES

EC FAN MOTOR OPTION

THE ENERGY EFFICIENT SOLUTION

ENVIRO-TEC® offers an alternative to the PSC motor that significantly increases the operating efficiency of fan terminal units. This motor is frequently referred to as an ECM (electronically commutated motor). It is a brushless DC (BLDC) motor utilizing a permanent magnet rotor. The motor has been in production for years and is commonly used in residential HVAC units. Fan speed control is accomplished through a microprocessor based variable speed controller (inverter) integral to the motor. The motor provides peak efficiency ratings between 70 & 80% for most applications.

ECM FEATURES AND BENEFITS

Ultra-High Motor & Controller Energy Efficiency

DC motors are significantly more efficient than AC motors. At full load the EC motor is typically 20% more efficient than a standard induction motor. Due to acoustical considerations, the fan motor on a fan powered terminal typically operates considerably less than full load. At this condition the overall motor / controller (SCR) efficiency can be cut in half. Due to the permanent magnet, DC design, the EC motor maintains a high efficiency at low speeds. Most fan powered unit selections will have an overall efficiency greater than 75%. Furthermore, the motor heat gain is greatly reduced providing additional energy savings by reducing the cold primary air requirement.

Pressure Independent Fan Volume

The integral microprocessor based controller includes a feature that provides sensorless (no external feedback) constant airflow operation by automatically adjusting the speed and torque in response to system pressure changes. This breakthrough will no doubt have far reaching benefits and endless applications. For starters, the fan volume supplied to the space will not significantly change as a filter becomes loaded. This provides new opportunities for medical applications where space pressurization and HEPA filters are applied. The air balance process will become simpler and more accurate since the fan volume will not need to be re-adjusted after the diffuser balance is accomplished.

Factory Calibrated Fan Volume

Due to the pressure independent feature, the fan capacity can now be calibrated at the factory. Within the published external pressure limits, the fan motor will automatically adjust to account for the varying static pressure requirements associated with different downstream duct configurations. This feature should not preclude the final field air balance verification process during the commissioning stage of a project. An electronic (PWM) speed control device is provided to

allow field changes of the fan capacity as the need arises. Fan volume can be field calibrated in two fashions depending on the type of PWM control board provided on the unit. For the Solo PWM board, a potentiometer is provided allowing manual adjustment using an instrument type screwdriver. If a Sync PWM board is provided, the fan volume can be calibrated through the BMS using an analog output (2 to10VDC typical) to the speed controller. A fan volume versus DC volts calibration chart is provided.

Designer / Owner Flexibility

The ECM incorporates ball bearings in lieu of sleeve bearings typically utilized with an induction motor. Unlike a sleeve bearing motor, the ECM does not have a minimum RPM requirement for

bearing lubrication. This allows it to operate over a much wider speed range. One motor can handle the capacity range previously handled by two motors, allowing simplification of the product line and considerable flexibility to the designer. The owner also benefits since equipment changes are much less likely with tenant requirement changes. A reduced spare parts inventory is another plus.

Custom Applications — Programmable Fan Operation

Boundless control opportunities arise due to the controllability of a DC motor combined with an integral microprocessor. Various input signals can direct the motor to behave in an application specific mode. For instance, multiple discrete fan capacities can be achieved. In addition, the fan speed can be varied in response to the space temperature load. The fan can also be programmed for a soft start. The motor starts at a very low speed and slowly ramps up to the required speed. This is especially beneficial for parallel flow fan terminals since the perceived change in space sound levels is lessened.

Extended Motor Life

The high motor efficiency provides a significantly reduced operating temperature compared to an induction motor. The lower temperature increases the longevity of all electrical components and therefore the life of the motor. The ball bearings do not require lubrication and do not adversely impact the motor life. Most fan powered applications will provide a motor life between 60,000 and 100,000 hours. A motor life of twenty five years will not be uncommon for a series flow fan terminal and a longer life can be expected for a parallel flow unit.

GENERAL SELECTION, EC MOTOR

Most variable speed electronic devices, including the EC motor, operate with a rectified and filtered AC power. As a result of the power conditioning, the input current draw is not sinusoidal; rather, the current is drawn in pulses at the peaks of the AC voltage. This pulsating current includes high frequency components called harmonics.

Harmonic currents circulate on the delta side of a Delta-Wye distribution transformer. On the Wye side of the transformer, these harmonic currents are additive on the neutral conductor. A transformer used in this type of application must be sized to carry the output KVA that will include the KVA due to circulating currents. Careful design must be provided when connecting singlephase products to three-phase systems to avoid potential problems such as overheating of neutral wiring conductors, connectors, and transformers. In addition, design consideration must be provided to address the degradation of power quality by the creation of wave shape distortion.

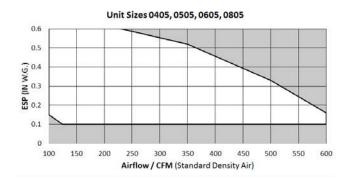
Catalog: ET130.13-EG7 (0325)

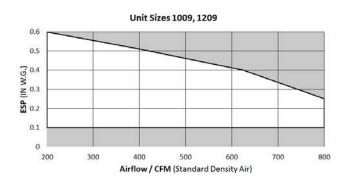
In summary, proper consideration must be given to the power distribution transformer selection and ground neutral conductor design to accommodate the 3-phase neutral AMPs shown in the adjacent table. Specific guidelines are available from the factory.

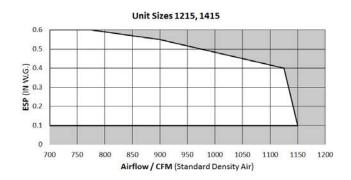
					PRII	MARY AIR VAL	VE					
			Min delta P's			ROOM NOISE	CRITERIA (NC)					
Unit Size	CFM	Fan Size	(IN.W.G.)	0.5" w	.g. Δ P	1.0" w	.g. Δ P	3.0" w	.g. ∆ P	Fan HP	Volts	FLA
			(114.44.G.)	Dis.	Rad.	Dis.	Rad.	Dis.	Rad.			
	100		0.01	-	-	-	20		28		120	5
0405	200		0.02	-	26	23	29	29	36		120	
0505	300		0.02	-	25	-	29	28	36		208	3
0605	500	05	0.04	-	-	21	23	27	30	1/3	240	2.8
0805	600		0.05	-	22	23	27	30	31		240	2.0
0003	800		0.10	21	26	24	29	29	36		277	2.6
	1000		0.15	24	30	29	33	34	39		211	2.0
	600		0.03	-	-	-	22	29	33		120	5
	800		0.05	-	-	-	23	33	36		120	Ů
1009	1000	09	0.08	-	20	21	25	36	38	1/3	208	3
1209	1200	09	0.12	-	26	22	29	37	40	1/3	200	Ů
	1400		0.16	-	29	22	30	38	43		240	2.8
	1700		0.13	-	27	21	28	37	40		277	2.6
	800		0.03	-	-	20	-	30	30		120	7.7
	1100		0.06	-	-	21	23	34	31		120	7.7
1215	1400]	0.09	-	-	21	25	35	33		208	5
1415	1500	15	0.09	-	-	23	24	33	32	1/2	200	
1410	1700]	0.13	-	22	22	27	36	36		240	4.3
	1800]	0.13	-	20	23	25	39	34	j	277	4.1
	2100		0.18	-	21	25	27	39	36		211	4.1

NOTES:

- 1. Min. ΔPs is the static pressure difference across the primary air valve with the damper wide open. All downstream losses (including optional hot water coil) are handled by the unit fan and need not be considered for primary air performance calculations. Data is certified in accordance with the AHRI 880 certification program.
- 2. NC values calculated based upon the 2002 Addendum to AHRI Standard 885 Appendix E *Typical Sound Attenuation Values* (shown at right).
- Calculate wire feeder size and maximum overcurrent protective device per NEC and local code requirements. Recommended fuse type shall be UL Class RK5, J, CC or other motor rated fuse.
- 4. For three-phase conductor sizing, multiply FLA by 1.73.
- 5. Includes factory provided 2mH choke for power factor correction.


DISCHARGE		OC	TAV	E BA	١ND	
ATTENUATION VALUES	2	3	4	5	6	7
Small Box (< 300 CFM)	24	28	39	53	59	40
Medium Box (300-700 CFM)	27	29	40	51	53	39
Large Box (> 700 CFM)	29	30	41	51	52	39
RADIATED		OC.	TAV	E BA	۱ND	
ATTENUATION VALUES	2	3	4	5	6	7
Type 2 - Mineral Fiber Ceiling	18	19	20	26	31	36


FAN PERFORMANCE, EC MOTOR


GENERAL FAN NOTE

The fan curves depicted on this page are for EC motors. Actual specified capacities which fall below the fan curve can be obtained by adjustment of the fan speed controller. Selections should only be made in the non-shaded areas. The minimum external static pressure requirement is shown for each fan assembly. The unit fan should not be energized prior to realizing this minimum external static pressure.

Terminals equipped with a hot water heating coil require the addition of the coil pressure drop to the specified external static pressure before making the fan selection.

ELECTRIC HEAT

MODEL VFL-EH

STANDARD FEATURES

- cETL listed as an assembly for safety compliance per UL 60335
- Primary auto-reset high limit
- Secondary high limit manual reset
- Hinged control panel
- Ni-Chrome elements
- Primary/secondary power terminations
- · Fusing per NEC
- Wiring diagram and ETL label
- Fan interlock device (relay or P.E. switch)
- Single point power connection
- Available kW increments are as follows: 0.5 to 12.0 kW - .50 kW;

12.0 to 18.0 kW - 1.0 kW

OPTIONAL FEATURES

Disconnect (toggle or door interlocking)

Catalog: ET130.13-EG7 (0325)

- · P.E. switches
- · Magnetic contactors
- · Manual reset secondary limit
- Proportional control (SSR)
- 24 volt control transformer
- · Airflow switch

SELECTION PROCEDURE

With standard heater elements, the maximum capacity (kW) is obtained by dividing the heating (fan) SCFM by 70. In other words, the terminal must have at least 70 SCFM per kW. In addition, each size terminal has a maximum allowable kW based upon the specific heater element configuration (i.e. voltage, phase, number of steps, etc.). Contact your ENVIRO-TEC representative for design assistance.

Heaters require a minimum of 0.1" w.g. downstream static pressure to ensure proper operation. Max ESP on TVL-EH of 0.4 in. wg.

For optimum diffuser performance in overhead heating applications, the supply air temperature should be within 20°F of the desired space temperature. This typically requires a higher air capacity which provides higher air motion in the space increasing thermal comfort. The electric heater should be selected with this in mind, keeping the LAT as low as possible.

Selection Equations

kW = $\frac{\text{SCFM x } \Delta \text{T x } 1.085^*}{3413}$

CFM = $\frac{\text{kW x } 3413}{\Delta \text{T x } 1.085^*}$

 $T = \frac{kW \times 3413}{SCFM \times 1.085^*}$

Calculating Line Amperage

Single Phase Amps = $\frac{\text{kW x 1000}}{\text{Volts}}$

Three Phase Amps = $\underline{kW \times 1000}$

Volts x 1.73

SINGLE POINT	POWER	E	LECTF		AT KW	/ LIMIT	rs
Heater Volts	Motor Volts		0505 0805		1209	1215,	1415
		Min	Max	Min	Max	Min	Max
115 - 120 / 1φ	115 - 120 / 1φ	0.5	5.5	0.5	4.5	0.5	4.5
208 / 1φ	208 / 1φ	0.5	5.5	0.5	6	0.5	9.5
230 - 240 / 1φ	230 / 1φ	0.5	5.5	0.5	6	0.5	11
277 / 1φ	277 / 1φ	0.5	5.5	0.5	6	0.5	13
208 / 3φ, 3 wire	208 / 1φ	1	5.5	1	6	1	13
240 / 3φ, 3 wire	230 / 1φ	1	5.5	1	6	1	13
208 / 3φ, 4 wire	115 - 120 / 1φ	1	5.5	1	6	1	13
240 / 3φ, 4 wire	240 / 3φ, 4 wire 115 - 120 / 1φ				6	1	13
460 - 480 / 3φ, 4 wire	277 / 1φ	1	5.5	1	6	1	13

^{*} Air density at sea level - reduce by 0.036 for each 1000 feet of altitude above sea level.

HOT WATER COIL DATA

MODEL VFL-WC

STANDARD FEATURES

- Coils are designed, manufactured and tested by ENVIRO-TEC
- Aluminum fin construction with die-formed spacer collars for uniform spacing
- Mechanically expanded copper tubes, leak tested to 450 PSIG air pressure and rated at 450 PSIG working pressure at 200°F
- 1, 2, 3 and 4 row configurations
- · Male sweat type water connections

OPTIONAL FEATURES

- Multi-circuit coils for reduced water pressure drop
- Opposite hand water connections

DEFINITION OF TERMS

EAT	Entering Air Temperature (°F)
LAT	Leaving Air Temperature (°F)
EWT	Entering Water Temperature (°F)
LWT	Leaving Water Temperature (°F)
CFM	Air Capacity (Cubic Feet per Minute)
GPM	Water Capacity (Gallons per Minute)
MADIL	4 000 DTIIII

MBH 1,000 BTUH

BTUH Coil Heating Capacity

(British Thermal Units per Hour)

 ΔT EWT minus EAT

SELECTION PROCEDURE

Hot Water Coil Performance Tables are based upon a temperature difference of 115°F between entering water and entering air. If this ΔT is suitable, proceed directly to the performance tables for selection. All pertinent performance data is tabulated.

EN ⁻	ENTERING WATER - AIR TEMPERATURE DIFFERENTIAL (△T) CORRECTION FACTORS														
ΔT 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80															
FACTOR	0.15	0.19	0.23	0.27	0.31	0.35	0.39	0.43	0.47	0.51	0.55	0.59	0.63	0.67	0.71
ΔT	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155
FACTOR	0.75	0.79	0.83	0.88	0.92	0.96	1.00	1.04	1.08	1.13	1.17	1.21	1.25	1.29	1.33

The table above gives correction factors for various entering Δ T's (difference between entering water and entering air temperatures). Multiply MBH values obtained from selection tables by the appropriate correction factor above to obtain the actual MBH value. Air and water pressure drop can be read directly from the selection table. The leaving air and leaving water temperatures can be calculated from the following fundamental formulas:

LAT = EAT + BTUH
$$1.085 \times CFM$$
LWT = EWT - BTUH
$$500 \times GPM$$

HOT WATER COIL DATA

MODEL VFL-WC UNIT SIZES 0405, 0505, 0605, 0805 STANDARD CIRCUITING

Al	RFLOW	V	VATER FLO	OW	L	AT	LV	VT	CAPA	CITY
Rate	Air PD	Rate	Water PD	(FT.W.G.)	(°	F)	(°	F)	(ME	3H)
(CFM)	(IN.W.G.)	(GPM)	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row
		0.5	0.45	0.88	132.5	156.6	150.0	139.5	7.3	9.9
100	1 Row 0.01	1.0	1.39	2.67	139.9	164.5	163.3	157.9	8.1	10.8
100	2 Row 0.01	2.0	4.90	9.28	144.3	168.3	171.2	168.5	8.6	11.2
		4.0	17.38	-	146.8	-	175.4	-	8.9	-
		0.5	0.45	0.88	112.5	133.0	137.9	120.0	10.3	14.7
200	1 Row 0.01	1.0	1.39	2.67	120.7	145.7	155.3	144.2	12.1	17.5
200	2 Row 0.02	2.0	4.90	9.28	125.9	152.8	166.5	160.5	13.2	19.0
		4.0	17.38	-	128.9	-	172.9	-	13.9	-
		0.5	0.45	0.88	102.1	118.5	130.7	109.2	12.1	17.4
300	1 Row 0.02	1.0	1.39	2.67	110.1	132.5	150.0	135.2	14.7	21.9
300	2 Row 0.03	2.0	4.90	9.28	115.5	141.2	163.2	154.6	16.4	24.8
		4.0	17.38	-	118.7	-	171.0	-	17.5	-
		0.5	0.45	0.88	95.7	109.1	125.8	102.4	13.3	19.1
400	1 Row 0.02	1.0	1.39	2.67	103.3	123.1	146.1	128.7	16.6	25.2
400	2 Row 0.05	2.0	4.90	9.28	108.6	132.6	160.6	150.0	18.9	29.3
		4.0	17.38	-	111.9	-	169.6	-	20.3	-
		0.5	0.45	0.88	91.3	102.4	122.0	97.7	14.2	20.3
500	1 Row 0.03	1.0	1.39	2.67	98.4	116.0	143.0	123.7	18.1	27.6
500	2 Row 0.07	2.0	4.90	9.28	103.6	125.8	158.5	146.3	20.9	32.9
		4.0	17.38	-	106.9	-	168.3	_	22.7	_

MULTI-CIRCUITING

Al	RFLOW	V	VATER FLO	OW .	LA	AT	LV	VT	CAPA	CITY
Rate	Air PD	Rate	Water PD	(FT.W.G.)	(°	F)	(°	F)	(MI	3H)
(CFM)	(IN.W.G.)	(GPM)	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row
		0.5	0.09	0.15	129.3	153.8	151.5	140.7	7.0	9.6
100	1 Row 0.01	1.0	0.31	0.52	137.7	162.8	163.8	158.3	7.9	10.6
100	2 Row 0.01	2.0	1.05	1.68	142.9	167.4	171.3	168.6	8.4	11.1
		4.0	3.85	6.03	145.9	169.6	175.5	174.2	8.8	11.3
		0.5	0.09	0.15	109.2	129.5	140.8	123.0	9.6	14.0
200	1 Row 0.01	1.0	0.31	0.52	118.1	143.0	156.4	145.4	11.5	16.9
200	2 Row 0.02	2.0	1.05	1.68	124.1	151.1	166.8	160.9	12.8	18.6
		4.0	3.85	6.03	127.8	155.5	173.0	169.9	13.6	19.6
		0.5	0.09	0.15	99.1	115.2	134.7	113.6	11.1	16.3
300	1 Row 0.02	1.0	0.31	0.52	107.5	129.5	151.7	137.2	13.8	21.0
300	2 Row 0.03	2.0	1.05	1.68	113.6	139.2	163.8	155.3	15.8	24.1
		4.0	3.85	6.03	117.5	144.8	171.2	166.7	17.1	25.9
		0.5	0.09	0.15	92.9	106.1	130.6	107.6	12.1	17.8
400	1 Row 0.02	1.0	0.31	0.52	100.8	120.1	148.3	131.3	15.5	23.9
400	2 Row 0.05	2.0	1.05	1.68	106.7	130.3	161.4	151.0	18.1	28.3
		4.0	3.85	6.03	110.7	136.6	169.8	164.1	19.8	31.0
		0.5	0.09	0.15	88.8	99.8	127.5	103.5	12.9	18.8
E00	1 Row 0.03	1.0	0.31	0.52	96.1	113.1	145.6	126.9	16.8	26.0
500	2 Row 0.07	2.0	1.05	1.68	101.8	123.5	159.6	147.6	19.9	31.7
		4.0	3.85	6.03	105.7	130.2	168.7	161.9	22.0	35.3

NOTES:

- 1. Data is based on 180°F entering water and 65°F entering air temperature at sea level. See selection procedure for other conditions
- 2. For optimum diffuser performance in overhead heating applications, the supply air temperature should be within 20°F of the desired space temperature. This typically requires a higher air capacity which provides higher air motion in the space, increasing thermal comfort. The hot water coil should be selected with this in mind, keeping the LAT as low as possible.

MODEL VFL-WC UNIT SIZES 1009, 1209 STANDARD CIRCUITING

Α	IRFLOW		1	WATER FLC	w	L/	ΑT	LV	VT	CAPA	CITY
Rate	Air PD)	Rate	Water PD	(FT.W.G.)	l (°	F)	(°	F)	(ME	3H)
(CFM)	(IN.W.G	.)	(GPM)	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row
			0.5	0.55	1.09	108.1	124.5	122.9	101.5	14.0	19.3
300	1 Row 0	.01	1.0	1.68	3.27	118.0	140.8	144.8	129.7	17.2	24.6
300	2 Row 0	.02	2.0	5.84	11.23	124.6	150.6	160.1	151.5	19.4	27.8
			4.0	20.57	-	128.6	-	169.4	-	20.7	_
			0.5	0.55	1.09	100.8	113.9	116.9	93.9	15.5	21.2
400	1 Row 0	.01	1.0	1.68	3.27	110.3	130.8	139.8	121.9	19.6	28.5
400	2 Row 0	.02	2.0	5.84	11.23	117.1	142.0	156.9	145.9	22.6	33.4
			4.0	20.57	-	121.2	-	167.5	-	24.3	-
			0.5	0.55	1.09	95.7	106.5	112.4	88.9	16.6	22.5
500	1	.02	1.0	1.68	3.27	104.8	123.1	136.0	115.9	21.6	31.5
300	2 Row 0	.03	2.0	5.84	11.23	111.5	135.0	154.2	141.3	25.2	37.9
			4.0	20.57	-	115.7	-	165.9	-	27.4	
			0.5	0.55	1.09	91.9	100.9	108.9	85.4	17.5	23.4
600		.02	1.0	1.68	3.27	100.6	117.0	132.8	111.3	23.1	33.8
000	2 Row 0	.05	2.0	5.84	11.23	107.1	129.2	151.9	137.4	27.4	41.7
			4.0	20.57	-	111.3	-	164.5	-	30.1	-
			0.5	0.55	1.09	89.0	96.7	106.2	82.7	18.2	24.0
700		.03	1.0	1.68	3.27	97.3	112.0	130.1	107.5	24.5	35.7
700	2 Row 0	.06	2.0	5.84	11.23	103.7	124.3	150.0	134.1	29.3	45.0
			4.0	20.57	-	107.8	-	163.3	-	32.5	
			0.5	0.55	1.09	86.6	80.6	103.8	93.3	18.7	24.5
800		.04	1.0	1.68	3.27	94.5	107.9	127.8	104.4	25.6	37.2
000	2 Row 0	.07	2.0	5.84	11.23	100.8	120.2	148.3	131.2	31.0	47.8
			4.0	20.57	-	104.9	-	162.2	-	34.6	-
	4.5.		0.5	0.55	1.09	84.7	90.6	101.9	79.0	19.2	24.9
900	1	.04	1.0	1.68	3.27	92.3	104.5	125.8	101.8	26.6	38.5
	2 Row 0	.09	2.0	5.84	11.23	98.4	116.6	146.7	128.6	32.5	50.3
	<u> </u>		4.0	20.57	-	102.5	100.7	161.3	157.2	36.5	-

MULTI-CIRCUITING

Α	IRFLOW		1	WATER FLO	W	L/	AT T	LV	VT	CAPA	CITY
Rate	Air PD)	Rate	Water PD	(FT.W.G.)	(°	F)	(°	F)	(ME	3H)
(CFM)	(IN.W.G	.)	(GPM)	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row
			0.5	0.10	0.19	105.4	121.8	126.4	105.0	13.1	18.5
300	1 Row 0	.01	1.0	0.36	0.62	115.7	138.4	146.3	131.3	16.5	23.9
300	2 Row 0	.02	2.0	1.19	1.97	122.9	148.9	160.7	152.1	18.8	27.3
			4.0	4.31	6.97	127.5	154.7	169.6	165.0	20.3	29.2
			0.5	0.11	0.19	98.3	111.6	121.2	98.1	14.4	20.2
400		.01	1.0	0.36	0.62	108.0	128.3	141.9	124.1	18.7	27.4
400	2 Row 0.	.02	2.0	1.19	1.97	115.3	140.1	157.6	146.7	21.8	32.5
			4.0	4.32	6.98	120.0	147.0	167.8	161.8	23.8	35.5
			0.5	0.11	0.19	93.4	104.4	117.4	93.4	15.4	21.3
500		.02	1.0	0.36	0.63	102.6	120.6	138.4	118.6	20.4	30.1
300	2 Row 0.	.03	2.0	1.19	1.98	109.7	133.0	155.2	142.4	24.2	36.8
			4.0	4.32	7.00	114.5	140.6	166.2	159.0	26.8	40.9
			0.5	0.11	0.19	89.8	99.1	114.4	90.1	16.1	22.2
600		.02	1.0	0.36	0.63	98.5	114.6	135.6	114.4	21.7	32.2
	2 Row 0.	.05	2.0	1.19	1.99	105.4	127.1	153.1	138.7	26.3	40.4
			4.0	4.32	7.01	110.1	135.2	164.9	156.6	29.3	45.6
			0.5	0.11	0.19	87.0	95.1	112.0	87.6	16.7	22.8
700		.03	1.0	0.36	0.63	95.2	109.7	133.2	111.0	22.9	33.9
'00	2 Row 0.	.06	2.0	1.20	1.99	102.0	122.3	151.3	135.7	28.0	43.4
			4.0	4.33	7.02	106.6	130.6	163.8	154.5	31.6	49.8
			0.5	0.11	0.19	84.8	91.9	110.0	85.6	17.2	23.3
800		.04	1.0	0.36	0.63	92.6	105.8	131.2	108.1	23.9	35.3
	2 Row 0.	.07	2.0	1.20	1.99	99.1	118.1	149.7	133.0	29.6	46.0
			4.0	4.33	7.03	103.7	126.7	162.8	152.6	33.6	53.4
	1.5		0.5	0.11	0.19	83.1	89.3	108.4	84.0	17.6	23.7
900		.04	1.0	0.36	0.63	90.4	102.5	129.5	105.8	24.8	36.5
	2 Row 0	.09	2.0	1.20	2.00	96.7	114.6	148.3	130.7	31.0	48.4
			4.0	4.33	7.03	101.3	123.2	161.8	150.9	35.4	56.8

See Notes on following page.

HOT WATER COIL DATA

MODEL VFL-WC UNIT SIZES 1215 AND 1415 STANDARD CIRCUITING

AIRFLOW			WATER FLOW			LAT		LWT		CAPACITY	
Rate	Air PD		Rate	Water PD (FT.W.G.)		(°F)		(°F)		(MBH)	
(CFM)	(IN.W.	.G.)	(GPM)	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row
600		0.02 0.04	0.5	0.58	0.20	92.8	100.0	106.6	87.8	18.1	22.7
	1 Row		1.0	1.78	0.66	102.0	116.2	130.9	112.3	24.1	33.3
	2 Row		2.0	6.17	2.07	109.0	129.3	150.7	137.3	28.6	41.8
			4.0	21.66	7.30	113.5	137.7	163.8	155.8	31.5	47.2
800		0.03 0.06	0.5	0.58	0.20	87.4	92.5	101.3	83.4	19.4	23.8
	1 Row		1.0	1.78	0.66	95.8	107.1	125.6	105.8	26.7	36.5
	2 Row		2.0	6.17	2.07	102.4	120.1	146.8	131.2	32.4	47.8
			4.0	21.66	7.30	106.9	129.1	161.4	151.6	36.3	55.5
1000		0.04 0.09	0.5	0.58	0.20	83.7	87.7	97.6	80.5	20.3	24.6
	1 Row		1.0	1.78	0.66	91.4	100.8	121.7	101.2	28.6	38.8
	2 Row		2.0	6.17	2.07	97.8	113.4	143.7	126.6	35.5	52.4
			4.0	21.66	7.30	102.1	122.5	159.4	148.1	40.2	62.3
1200		0.06 0.12	0.5	0.58	0.20	81.1	84.3	94.8	78.6	21.0	25.0
	1 Row		1.0	1.78	0.66	88.2	96.1	118.5	97.8	30.2	40.5
	2 Row		2.0	6.17	2.07	94.3	108.1	141.1	122.9	38.1	56.0
			4.0	21.66	7.30	98.5	117.3	157.7	145.3	43.6	67.9
1400		0.08 0.15	0.5	0.58	0.20	79.2	81.8	92.6	77.1	21.5	25.4
	1 Row		1.0	1.78	0.66	85.8	92.6	115.9	95.2	31.5	41.8
	2 Row		2.0	6.17	2.07	91.5	103.9	138.9	119.8	40.3	59.1
			4.0	21.66	7.30	95.7	113.0	156.2	142.8	46.5	72.8

MULTI-CIRCUITING

Al	RFLOW	WATER FLOW			LAT		LWT		CAPACITY	
Rate	Air PD	Rate	Water PD (FT.W.G.)		(°F)		(°F)		(MBH)	
(CFM)	(IN.W.G.)	(GPM)	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row	1 Row	2 Row
600		0.5	0.11	0.05	90.8	97.3	111.8	94.8	16.8	21.0
	1 Row 0.02	1.0	0.38	0.19	100.0	112.7	133.6	116.9	22.7	31.0
	2 Row 0.04	2.0	1.24	0.67	107.3	126.2	151.8	139.4	27.5	39.8
		4.0	4.47	2.38	112.3	135.4	164.2	156.5	30.7	45.8
800		0.5	0.11	0.05	85.6	90.4	107.3	90.8	17.9	22.0
	1 Row 0.03	1.0	0.38	0.19	93.8	104.0	129.0	111.3	25.0	33.8
	2 Row 0.06	2.0	1.24	0.67	100.8	117.0	148.2	134.0	31.0	45.1
		4.0	4.47	2.38	105.7	126.7	161.9	152.6	35.3	53.5
1000		0.5	0.11	0.05	82.3	85.9	104.1	88.1	18.7	22.7
	1 Row 0.04	1.0	0.38	0.19	89.7	98.0	125.5	107.4	26.7	35.7
	2 Row 0.09	2.0	1.24	0.67	96.2	110.3	145.4	129.9	33.8	49.1
		4.0	4.47	2.38	101.0	120.1	160.0	149.5	39.0	59.6
1200		0.5	0.11	0.05	79.8	82.8	101.6	86.2	19.3	23.1
	1 Row 0.06	1.0	0.38	0.19	86.6	93.6	122.8	104.4	28.1	37.2
	2 Row 0.12	2.0	1.24	0.67	92.8	105.2	143.1	126.7	36.1	52.3
		4.0	4.47	2.38	97.4	114.8	158.4	146.9	42.1	64.8
1400		0.5	0.11	0.05	78.0	80.5	99.7	84.8	19.8	23.5
	1 Row 0.08	1.0	0.38	0.19	84.2	90.3	120.5	102.2	29.2	38.3
	2 Row 0.15	2.0	1.24	0.67	90.1	101.2	141.1	124.1	38.1	54.9
		4.0	4.47	2.38	94.6	110.6	157.0	144.6	44.8	69.1

NOTES:

- 1. Data is based on 180°F entering water and 65°F entering air temperature at sea level. See selection procedure for other conditions.
- 2. For optimum diffuser performance in overhead heating applications, the supply air temperature should be within 20°F of the desired space temperature. This typically requires a higher air capacity which provides higher air motion in the space, increasing thermal comfort. The hot water coil should be selected with this in mind, keeping the LAT as low as possible.

GUIDE SPECIFICATIONS

GENERAL

Furnish and install ENVIRO-TEC Model VFL, or equal, Low Height Parallel Flow Variable Volume Fan Powered Terminals of the sizes and capacities scheduled. Units shall be ETL listed. Terminals with electric heat shall be listed as an assembly. Separate listings for the terminal and electric heater are not acceptable. Terminals shall include a single point electrical connection. Terminal units shall be AHRI certified and bear the AHRI 880 seal.

The entire unit shall be designed and built as a single unit. Field-assembled components or built-up terminals employing components from multiple manufacturers are not acceptable.

CONSTRUCTION

Terminals shall be constructed of not less than 20 gauge galvanized steel, able to withstand a 125 hour salt spray test per ASTM B-117. The terminal casing shall be mechanically assembled (spot-welded casings are not acceptable).

Casing shall be internally lined with 1/2" thick fiberglass insulation, rated for a maximum air velocity of 5000 f.p.m. Maximum thermal conductivity shall be .24 (BTU • in) / (hr • ft2 • °F). Insulation must meet all requirements of ASTM C1071 (including C665), UL 181 for erosion, and carry a 25/50 rating for flame spread/smoke developed per ASTM E-84, UL 723 and NFPA 90A. Raw insulation edges on the discharge of the unit must be covered with metal liner to eliminate flaking of insulation during field duct connections. Simple "buttering" of raw edges with an approved sealant is not acceptable.

Casing shall have bottom access to gain access to the primary air valve and fan assembly. The opening shall be sufficiently large to allow complete removal of the fan if necessary. The casing shall be constructed in a manner to provide a single rectangular discharge collar. Multiple discharge openings are not acceptable. All appurtenances including control assemblies, control enclosures, hot water heating coils, and electric heating coils shall not extend beyond the top or bottom of the unit casing.

At an air velocity of 2000 f.p.m. through the primary inlet, the static pressure drop across the basic terminal or basic terminal with electric heat shall not exceed 0.20" W.G. for all unit sizes.

SOUND

The terminal manufacturer shall provide AHRI certified sound power data for radiated and discharge sound. The sound levels shall not exceed the octave band sound power levels indicated on the schedule. If the sound data does not meet scheduled criteria, the contractor shall be responsible for the provision and installation of any additional equipment or material necessary to achieve the scheduled sound performance.

Catalog: ET130.13-EG7 (0325)

PRIMARY AIR VALVE

Rectangular shaped primary air valves shall consist of minimum 18 gauge galvanized steel. Cylindrically shaped primary air valves shall consist of minimum 22 gauge galvanized steel and include embossment rings for rigidity. The damper blade shall be connected to a solid shaft by means of an integral molded sleeve which does not require screw or bolt fasteners. The shaft shall be manufactured of a low thermal conducting composite material, and include a molded damper position indicator visible from the exterior of the unit. The damper shall pivot in nylon bearings. The damper actuator shall be mounted on the exterior of the terminal for ease of service. The valve assembly shall include internal mechanical stops for both full open and closed positions. The damper blade seal shall be secured without use of adhesives. The air valve leakage shall not exceed 1% of maximum inlet rated airflow at 3" W.G. inlet pressure for cylindrical valves. Rectangular valve leakage shall not exceed 2% of maximum inlet rated airflow at 3" W.G. inlet pressure.

PRIMARY AIRFLOW SENSOR

Differential pressure airflow sensor shall traverse the duct along two perpendicular diameters. Single axis sensor shall not be acceptable for duct diameters 6" or larger. A minimum of 12 total pressure sensing points shall be utilized. The total pressure inputs shall be averaged using a pressure chamber located at the center of the sensor. A sensor that delivers the differential pressure signal from one end of the sensor is not acceptable. The sensor shall output an amplified differential pressure signal that is at least 2.3 times the equivalent velocity pressure signal obtained from a conventional pitot tube. The sensor shall develop a differential pressure of 0.015" w.g. at an air velocity of < 325 FPM. Documentation shall be submitted which substantiates this requirement. Balancing taps and airflow calibration charts shall be provided for field airflow measurements.

GUIDE SPECIFICATIONS

FAN ASSEMBLY

The unit fan shall utilize a forward curved, dynamically balanced, galvanized wheel with a direct drive motor. The motor shall be an "Electronically Commutated Motor".

The fan motor shall be unpluggable from the electrical leads at the motor case for simplified removal (open frame motors only).

ECM FAN MOTOR

Fan motor shall be ECM, "Electronically Commutated Motor" "Genteq® Eon." Motor shall be brushless DC controlled by an integral controller / inverter that operates the wound stator and senses rotor position to electronically commutate the stator. Motor shall be permanent magnet type with near-zero rotor losses designed for synchronous rotation. The motor shall utilize permanently lubricated ball bearings. Motor shall maintain minimum 70% efficiency over the entire operating range. Motor speed control shall be accomplished through a PWM (pulse width modulation) controller specifically designed for compatibility with the ECM. The speed controller shall have terminals for field verification of fan capacity utilizing a digital volt meter. A calibration graph shall be supplied indicating Fan CFM verses DC Volts.

HOT WATER COIL

Terminal shall include an integral hot water coil where indicated on the plans. The coil shall be manufactured by the terminal unit manufacturer and shall have a minimum 22 gauge galvanized sheet metal casing. Coil to be constructed of pure aluminum fins with full fin collars to assure accurate fin spacing and maximum tube contact. Fins shall be spaced with a minimum of 10 per inch and mechanically fixed to seamless copper tubes for maximum heat transfer.

Each coil shall be hydrostatically tested at a minimum of 450 PSIG under water, and rated for a maximum 450 PSIG working pressure at 200°F.

ELECTRIC HEATERS

Terminal shall include an integral electric heater where indicated on the plans. The heater cabinet shall be constructed of not less than 20 gauge galvanized steel. Heater shall have a hinged access panel for entry to the controls.

A power disconnect shall be furnished to render the

heater non-operational. Heater shall be furnished with all controls necessary for safe operation and full compliance with UL 60335 and National Electric Code requirements.

Catalog: ET130.13-EG7 (0325)

Heater shall have a single point electrical connection. It shall include a primary disc-type automatic reset high temperature limit, secondary high limit(s) of manual reset, Ni-Chrome elements, and fusing per UL and NEC. Heater shall have complete wiring diagram with label indicating power requirement and KW output. Heater shall be interlocked with fan terminal so as to preclude operation of the heater when the fan is not running.

OPTIONS

Foil Faced Insulation

Insulation shall be covered with scrim backed foil facing. All insulation edges shall be covered with foil or metal nosing. In addition to the basic requirements, insulation shall meet ASTM C1136 for insulation facings, and ASTM C1338 for mold, mildew and humidity resistance.

Elastomeric Closed Cell Foam Insulation

Provide Elastomeric Closed Cell Foam Insulation in lieu of standard. Insulation shall conform to UL 181 for erosion and NFPA 90A for fire, smoke and melting, and comply with a 25/50 Flame Spread and Smoke Developed Index per ASTM E-84 or UL 723. Additionally, insulation shall comply with Antimicrobial Performance Rating of 0, no observed growth, per ASTM G-21. Polyethylene insulation is not acceptable.

Double Wall Construction

The terminal casing shall be double wall construction using a 22 gauge galvanized metal liner covering all insulation.

Filters

Terminals shall include a filter rack and 1" thick disposable fiberglass filter, allowing removal without horizontal sliding.

PIPING PACKAGES

Provide a standard factory assembled non-insulated valve piping package to consist of a 2 way, on/off, motorized electric control valve and two ball isolation valves. Control valves are piped normally closed to the coil. Maximum entering water temperature on the control valve shall be 200°F. The maximum close-off pressure is 40 PSIG (1/2") or 20 PSIG (3/4"). Maximum

GUIDE SPECIFICATIONS

operating pressure shall be 300 PSIG.

Option: Provide 3-wire floating point modulating control valve (fail-in-place) in lieu of standard 2-position control valve with factory assembled valve piping package.

Option: Provide high pressure close-off actuators for 2-way, on/off control valves. Maximum close-off pressure is 50 PSIG (1/2") or 25 PSIG (3/4)".

Option: Provide either a fixed or adjustable flow control device for each piping package.

Option: Provide unions and/or pressure-temperature ports for each piping package.

Piping package shall be completely factory assembled, including interconnecting pipe, and shipped separate from the unit for field installation on the coil, so as to minimize the risk of freight damage.

CONTROLS

DDC for BACnet

Each VAV terminal unit shall be bundled with a digital controller. The controller shall be compatible with a MS/ TP (Master-Slave/Token-Passing) BACnet system network. A unique network address and a BACnet site address shall be assigned to each controller, and referenced to the tagging system used on the drawings and in the schedules provided by the Project Engineer. All controllers shall be factory mounted and wired, with the controller's hardware address set, and all of the individual terminal's data pre-loaded into the controller. The terminal's data shall include, but not be limited to Max CFM, Min CFM, Heating CFM, and terminal K factor. Heating system operating data shall also be factory installed for all terminals with heat. Communications with the digital controller shall be accomplished through the MS/TP BACnet network or through a Bluetooth connector. The digital controller shall have hardware input and output connections to facilitate the specified sequence of operation in either the network mode, or on a stand-alone basis. The terminal unit manufacturer shall coordinate, where necessary, with the Temperature Control Contractor.

Pneumatic Controls

Units shall be controlled by a pneumatic differential pressure reset volume controller. Controller shall be capable of pressure independent operation down to 0.03 inches W.G. differential pressure and shall be factory set to the specified airflow (CFM). Controller shall not exceed 11.5 scim (Standard Cubic Inches per

Minute) air consumption @ 20 PSIG. Unit primary air valve shall modulate in response to the room mounted thermostat and shall maintain airflow in relation to thermostat pressure regardless of system static pressure changes. An airflow (CFM) curve shall be affixed to the terminal unit expressing differential pressure vs. CFM. Pressure taps shall be provided for field use and ease of balancing. Terminal unit manufacturer shall supply and manufacture a 5 to 10 PSIG pneumatic actuator capable of a minimum of 45 in. lbs. of torque. Actual sequence of operation is shown on the contract drawings. Terminal unit manufacturer shall coordinate, where necessary, with the Temperature Control Contractor.

Catalog: ET130.13-EG7 (0325)

Catalog: ET130.13-EG7 (0325)

